Search
Now showing items 21-27 of 27
Combinatorics and Algorithmics of Strings
(Dagstuhl Publishing, 2014-03-09)
Strings (aka sequences or words) form the most basic and natural data structure. They occur whenever information is electronically transmitted (as bit streams), when natural language text is spoken or written down (as words ...
Unary patterns under permutations
(Elsevier, 2018-06-04)
Thue characterized completely the avoidability of unary patterns. Adding function variables gives a general setting capturing avoidance of powers, avoidance of patterns with palindromes, avoidance of powers under coding, ...
Least Periods of Factors of Infinite Words
(EDP Sciences, 2009)
We show that any positive integer is the least period of a factor of the Thue-Morse word. We also characterize the set of least periods of factors of a Sturmian word. In particular, the corresponding set for the Fibonacci ...
Non-Repetitive Tilings
(The Electronic Journal of Combinatorics, 2002-07-03)
In 1906 Axel Thue showed how to construct an infinite non-repetitive (or square-free) word on an alphabet of size 3. Since then this result has been rediscovered many times and extended in many ways. We present a two-dimensional ...
Suffix conjugates for a class of morphic subshifts
(Cambridge University Press, 2015-09)
Let A be a finite alphabet and f: A^* --> A^* be a morphism with an iterative fixed point f^\omega(\alpha), where \alpha{} is in A. Consider the subshift (X, T), where X is the shift orbit closure of f^\omega(\alpha) and ...
Binary Words Containing Infinitely Many Overlaps
(The Electronic Journal of Combinatorics, 2006-09-22)
We characterize the squares occurring in infinite overlap-free binary words and construct various α power-free binary words containing infinitely many overlaps.
A Ternary Square-free Sequence Avoiding Factors Equivalent to abcacba
(The Electronic Journal of Combinatorics, 2016-05-27)
We solve a problem of Petrova, finalizing the classification of letter patterns avoidable by ternary square-free words; we show that there is a ternary square-free word avoiding letter pattern xyzxzyx. In fact, we characterize ...